Restoration of Full-Length SMN Promoted by Adenoviral Vectors Expressing RNA Antisense Oligonucleotides Embedded in U7 snRNAs

نویسندگان

  • Till Geib
  • Klemens J. Hertel
چکیده

BACKGROUND Spinal Muscular Atrophy (SMA) is an autosomal recessive disease that leads to specific loss of motor neurons. It is caused by deletions or mutations of the survival of motor neuron 1 gene (SMN1). The remaining copy of the gene, SMN2, generates only low levels of the SMN protein due to a mutation in SMN2 exon 7 that leads to exon skipping. METHODOLOGY/PRINCIPAL FINDINGS To correct SMN2 splicing, we use Adenovirus type 5-derived vectors to express SMN2-antisense U7 snRNA oligonucleotides targeting the SMN intron 7/exon 8 junction. Infection of SMA type I-derived patient fibroblasts with these vectors resulted in increased levels of exon 7 inclusion, upregulating the expression of SMN to similar levels as in non-SMA control cells. CONCLUSIONS/SIGNIFICANCE These results show that Adenovirus type 5-derived vectors delivering U7 antisense oligonucleotides can efficiently restore full-length SMN protein and suggest that the viral vector-mediated oligonucleotide application may be a suitable therapeutic approach to counteract SMA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction of SMN2 Pre-mRNA splicing by antisense U7 small nuclear RNAs.

Mutations in one of the duplicated survival of motor neuron (SMN) genes lead to the progressive loss of motor neurons and subsequent development of spinal muscular atrophy (SMA), a common, and usually fatal, hereditary disease. Homozygous absence of the telomeric copy (SMN1) correlates with development of SMA because differential splicing of the centromeric copy (SMN2) leads to exon 7 skipping ...

متن کامل

The Cellular Processing Capacity Limits the Amounts of Chimeric U7 snRNA Available for Antisense Delivery

Many genetic diseases are induced by mutations disturbing the maturation of pre-mRNAs, often affecting splicing. Antisense oligoribonucleotides (AONs) have been used to modulate splicing thereby circumventing the deleterious effects of mutations. Stable delivery of antisense sequences is achieved by linking them to small nuclear RNA (snRNAs) delivered by viral vectors, as illustrated by studies...

متن کامل

Improved Antisense Oligonucleotide Design to Suppress Aberrant SMN2 Gene Transcript Processing: Towards a Treatment for Spinal Muscular Atrophy

Spinal muscular atrophy (SMA) is caused by loss of the Survival Motor Neuron 1 (SMN1) gene, resulting in reduced SMN protein. Humans possess the additional SMN2 gene (or genes) that does produce low level of full length SMN, but cannot adequately compensate for loss of SMN1 due to aberrant splicing. The majority of SMN2 gene transcripts lack exon 7 and the resultant SMNΔ7 mRNA is translated int...

متن کامل

Activation of a cryptic 5′ splice site reverses the impact of pathogenic splice site mutations in the spinal muscular atrophy gene

Spinal muscular atrophy (SMA) is caused by deletions or mutations of the Survival Motor Neuron 1 (SMN1) gene coupled with predominant skipping of SMN2 exon 7. The only approved SMA treatment is an antisense oligonucleotide that targets the intronic splicing silencer N1 (ISS-N1), located downstream of the 5' splice site (5'ss) of exon 7. Here, we describe a novel approach to exon 7 splicing modu...

متن کامل

Antisense oligonucleotides and spinal muscular atrophy: skipping along.

Antisense oligonucleotides (ASOs) can be used to alter the splicing of a gene and either restore production of a required protein or eliminate a toxic product. In this issue of Genes & Development, Hua and colleagues (pp. 1634-1644) show that ASOs directed against an intron splice silencer (ISS) in the survival motor neuron 2 (SMN2) gene alter the amount of full-length SMN transcript in the ner...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009